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Portfolio-driven Resource Management for Transient Cloud Servers

PRATEEK SHARMA,DAVID IRWIN, and PRASHANTSHENOY,University of Massachusetts Amherst

Cloud providers have begun to offer their surplus capacity in the form of low-cost transient servers, which can be revoked
unilaterally at any time. While the low cost of transient servers makes them attractive for a wide range of applications, such
as data processing and scientific computing, failures due to server revocation can severely degrade application performance.
Since different transient server types offer different cost and availability tradeoffs, we present the notion of server portfolios
that is based on financial portfolio modeling. Server portfolios enable construction of an “optimal” mix of severs to meet an
application’s sensitivity to cost and revocation risk. We implement model-driven portfolios in a system called ExoSphere, and
show how diverse applications can use portfolios and application-specific policies to gracefully handle transient servers. We
show that ExoSphere enables widely-used parallel applications such as Spark, MPI, and BOINC to be made transiency-aware
with modest effort. Our experiments show that allowing the applications to use suitable transiency-aware policies, ExoSphere
is able to achieve 80% cost savings when compared to on-demand servers and greatly reduces revocation risk compared to
existing approaches.
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1 INTRODUCTION
Cloud computing has become popular in recent years for a wide range of applications, including latency-sensitive
web services, computationally-intensive scientific workloads, and data-intensive parallel tasks. Due to their flexible
resource allocation and billing model, cloud platforms are especially well-suited for running applications with
dynamically varying workloads, or those that require compute resources for only short periods of time. Recently,
cloud platforms have introduced a new class of servers, called transient servers, which they may unilaterally revoke
at any time [46, 47]. Transient servers increase the utilization of cloud platforms, while enabling them to reclaim
resources at any time for higher priority users.

Transient servers typically incur a fraction of the cost of their regular (“on-demand”) server counterparts, making
them a popular choice for running large-scale data-intensive jobs involving tens or hundreds of servers due to
their low cost. However, revocations of some, or all, of an application’s transient servers can seriously disrupt its
performance or cause it to fail entirely. Thus, despite the low cost of transient servers, making effective use of this
new class of server remains challenging.

On some cloud platforms, such as Amazon EC2, transient servers have dynamically varying prices that fluctuate
continuously based on supply and demand. In addition, the availability of transient servers (in terms of their
mean time to revocation), can also vary significantly across server configurations and based on changing market
conditions. Unfortunately, cloud platforms generally do not directly expose availability statistics for transient
servers, requiring users to indirectly infer them, e.g., via a price history or active probing [39]. Thus, it is challenging
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for a cloud application to judiciously select the most appropriate server configuration based on historical pricing
or availability data to satisfy its needs. The problem is compounded by the large number of transient server
configurations available to applications—there are over 2500 distinct types of transient servers in EC2 and over 300
in Google’s cloud platform. Recent research suggests that mitigating revocation risk requires a parallel application
to diversify across multiple transient server types, which further complicates decision making [43].

The preemptible nature of transient servers also imposes new requirements on cloud applications. Specifically,
applications must determine whether and how to save their computation’s intermediate state to gracefully handle
server revocations, which are akin to server failures. Further, they must also define recovery policies to determine
how to re-acquire new transient servers upon revocation, and how to restore state and resume their computation
on these new servers. Different applications, such as Spark, MapReduce, and MPI, also have different tolerances
to revocations, and require different application-specific mechanisms to handle revocations and their subsequent
recovery. However, prior research has largely focused on separately designing custom modifications to support
transiency for each narrow class of application [36, 43, 57].

To address this problem, we introduce a model-driven framework called server portfolios. Portfolios represent a
virtual cloud cluster composed of a mix of transient server types with a configurable cost and availability depending
on the application’s tolerance to revocation risk and price sensitivity. Our portfolio model derives from Modern
Portfolio Theory in financial economics [37, 38], which enables investors to methodically construct a financial
portfolio from a large number of underlying assets with various risks and rewards.

The flexibility and explicit risk-awareness that portfolios offer is not provided by prior work on transient server
selection. A majority of prior work [19, 25, 49, 59] on transient servers solves the problem of choosing one server
type (among the hundreds that cloud providers offer). Choosing multiple server types has received relatively little
attention, and mostly relies on application-specific, ad-hoc approaches to optimize either cost or revocation-risk [43].
In contrast, portfolios are a general technique that allow server selection for a wide range of risk tolerances and
application preferences.

We use portfolio modeling as part of the design of an application-independent framework for supporting
transiency, called ExoSphere. ExoSphere uses portfolio modeling to expose virtual clusters of transient servers
of different types to different applications. Along with portfolio modeling, ExoSphere also supports custom
application-specific policies for handling transiency. In particular, ExoSphere adopts an Exokernel approach [27]
by exposing a set of basic mechanisms that are common to all transiency-enabled applications. These mechanisms
can be used by applications to design policies for handling revocations, saving state, and performing recovery.
Thus, ExoSphere’s mechanisms simplify modifying distributed applications to effectively run on transient servers.

Although ExoSphere’s design is general, its implementation builds on existing cluster managers, which often
serve as the “operating system” for data centers and support multiple concurrent distributed applications, e.g., Spark
and Hadoop. These systems, including Mesos [32] and Kubernetes [6], support a wide range of applications by
exposing a core set of functions related to resource allocation, revocation, and scheduling. ExoSphere adapts and
extends these functions to implement its portfolio abstraction and application-facing APIs. By using an existing
cluster manager (Mesos), ExoSphere makes a useful practical contribution by extending it to run on transient cloud
servers. In designing and implementing ExoSphere, this paper makes the following contributions:
Portfolio Modeling. We introduce a portfolio model for selecting transient cloud servers, and show how it can be
used by different applications to create virtual clusters with configurable cost and revocation risk. Our portfolio
model adapts and extends concepts from financial portfolio modeling to select a diverse set of servers for a
distributed application. We show how portfolios allow applications to explicitly navigate the risk versus reward
tradeoff.
Risk Management Framework. In addition to providing applications with model-driven portfolios, ExoSphere
also allows applications to define transiency-specifc policies for managing server revocation risk. We show that
these policies for handling transiency are inherently application-specific, and depend on a particular application’s
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Fig. 1. EC2 spot prices for three servers over May 2015.
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Fig. 2. Heat-map of covariances of spot prices of mar-
kets in the EC2 US-east-1 region. Significant number of
markets are weakly and negatively correlated.

workload and risk tolerance. We distill a general set of transiency-specific policies and mechanisms into a well-
defined API that it exposes to applications. Applications then implement various policies in handler functions
defined in the API, which are triggered based on changing market conditions, e.g., when prices increase or a
revocation occurs.
Implementation and Evaluation. Finally, we implement ExoSphere by extending Mesos, integrate it with EC2’s
spot market, and use it to implement transiency-aware variants of multiple applications. We show that ExoSphere
simplifies the development of these applications, while also improving their performance and decreasing their costs
compared to prior approaches. For example, we show that ExoSphere is able to achieve 80% reduction in cost
compared to using on-demand servers with a negligible risk of revocation.

2 BACKGROUND & MOTIVATION
In this section, we provide background on transient cloud servers and applications capable of exploiting them.
Transient Cloud Servers. Traditional cloud servers are leased on an on-demand basis—cloud customers may
request them when needed and the cloud platform provisions these servers until the customer relinquishes them.
Since customer demand for cloud resources can be highly dynamic, the cloud platform needs to over-provision
the aggregate server capacity to handle peak demand. Consequently, a significant portion of the cloud server
capacity tends to be idle during non-peak periods. Cloud providers have begun to lease this surplus capacity at
highly discounted prices to cost-sensitive customers. Doing so enables providers to earn revenue from otherwise
idle resources. Such surplus servers are referred to as transient servers since the cloud provider can reclaim them
from the customer at any time, e.g., when demand for standard on-demand servers begins to rise. Cloud providers
typically provide a brief advance warning prior to preempting a transient server to enable the customer to gracefully
shutdown the machine. The warning time currently ranges from two minutes in Amazon EC2 cloud to 30 seconds
on Google’s cloud platform.

Note that transient servers also arise internally in data centers, as cluster managers, such as Kubernetes, often
include explicit support for background versus foreground tasks, such that background tasks are revoked if
resources are needed for foreground tasks [6, 52]. While some prior work focuses on transient servers in this
context, these internal dynamics are similar to the external dynamics of transient cloud servers, as they also arise
from opportunistically leveraging idle resources. The key difference is that internal supply/demand dynamics are
generally well-known by the data center, while the external supply/demand dynamics of transient cloud servers are
only indirectly conveyed through price signals.
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Transient Server Pricing. Different cloud providers have employed different approaches for pricing transient
servers. Google’s transient servers, called preemptible instances [5], offer a fixed 80% discount but also have a
maximum lifetime of 24 hours (with the possibility of earlier preemption). In contrast, Amazon’s transient servers
(which are called spot instances [1]) offer a variable discount—the price of spot instances varies continuously based
on market supply and demand for each server type (Figure 1). The customer specifies a maximum price (called a
bid) that they are willing to pay when requesting spot servers. Amazon then runs a continuous sealed-bid multi-unit
uniform price auction based off of the bids submitted, and determines a market price for the server [14]. If the
market price increases above the bid price, then the server is immediately revoked after the warning period.

Since transient servers are surplus idle machines, the resources available in the transient server pool fluctuate
continuously depending on the supply and demand of on-demand servers. Thus, whether a certain transient server
is available depends on current market conditions. Furthermore, once allocated, the mean time to revocation may
also vary over time. Importantly, cloud providers expose current prices for transient servers, but do not expose the
surplus pool size or other availability metrics.
Transient Server Applications. Due to their preemptible nature, transient servers are typically not suitable for
running interactive applications, such as web services, or any application that cannot tolerate downtime caused by
server revocations. Batch-oriented disruption-tolerant applications are particularly well-suited for transient servers,
since they can often tolerate longer completion times caused by occasional downtimes. A common scenario is to
use tens or hundreds of transient servers to run highly parallel CPU-or-data-intensive applications at very low costs
(when compared to standard on-demand server prices). However, if some fraction (or all) of the servers are revoked
before the job has finished, the application has to resort to the following methods to resume computation.

The simplest approach (which is also the most wasteful) is to restart the entire job on new transient servers.
Alternatively, if the data-intensive application supports checkpointing, then its state can also be checkpointed
periodically and the job can be resumed from the most recent checkpoint after reacquiring lost servers. A final
approach is to simply live migrate to new servers after receiving the revocation warning. However, migration is
only feasible if an application’s memory footprint is small enough to be completely copied before termination.
Making Applications Transiency-aware. To effectively use transient cloud servers to run parallel batch-oriented
applications, we must address three key factors:
i) Choosing the “right” server types. Different server models offer different price and availability tradeoffs. Thus,
server selection must consider the application’s risk tolerance to revocation, as well servers’ expected price,
availability, and revocation frequency.
ii) Choosing appropriate fault-tolerance mechanisms. The revocation rates and delay-tolerance of the application
influence the choice of fault-tolerance mechanisms such as checkpointing/restart, replication, or migration.
iii) Recovering from server revocations. If some fraction (or all) of an application’s transient servers are revoked,
the application must determine when and how many servers to reacquire and how to resume the computation via
the chosen fault-tolerance mechanism.

In the rest of the paper, we present our model-driven portfolio framework for selecting transient servers and
show how it can be used to run transiency-aware parallel applications. We also describe how ExoSphere can
simplify the development of transiency-aware versions of applications, such as Spark, MPI, and BOINC with
modest implementation overhead.

3 PORTFOLIO-DRIVEN SELECTION
A key factor in making effective use of transient servers is judiciously choosing the most appropriate server
configuration for each application. Due to their preemptible nature and variable pricing, picking the “correct” server
configuration is surprisingly complex in today’s cloud platforms due to the following reasons:
Large number of potential choices. A typical cloud platform offers a large number of transient server markets.
Amazon’s EC2 cloud offers 2500 distinct markets, while Google Cloud Platform offers more than 300 markets
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for predefined machine types alone. Assuming an application imposes a certain base requirement on the desired
per-server compute and memory capacity, it must still choose from a large number of feasible configurations.
Pricing idiosyncrasies. Cloud operators such as Amazon EC2 use demand-supply driven pricing to price their spot
servers [10, 14]. Each server type has different demand-supply characteristics, and this can lead to some interesting
idiosyncrasies, which can be seen in Figure 1. In this example, the m3.medium in availability zone a has the most
stable prices, g2.2xlarge in the same availability zone has a lower average price but high variance, and the
m3.medium in availability zone b has higher price than in zone a. The g2.2xlarge price spikes are not correlated
with the other two servers. The example shows that smaller servers may occasionally be more heavily discounted
than smaller servers, and that identical servers in two availability zones may also be discounted differently.

Importantly, choosing a server configuration based on price alone may yield sub-optimal results. For instance,
server configurations with cheap prices may also see higher customer demand and consequently higher volatility
and frequent revocations. Frequent revocations add substantial overheads to an application in terms of increasing
checkpointing costs and adding recovery overheads. Instead, sometimes the choice of a slightly more expensive
server configuration that sees a lower revocation rate may be a better choice and yield lower overall costs.

Revocation rates may also not be related to average prices—neither the willingness to pay higher prices (by
using a higher bid) nor choosing higher priced configurations necessarily yield lower revocation rates [44]. It is
not practical to expect applications to analyze detailed price histories and volatilities across hundreds of transient
servers when choosing a server type.

Due to the challenges above, cloud providers such as Amazon have begun offering server selection tools. Amazon
SpotFleet [3] automatically replaces revoked servers. However, SpotFleet provides a limited choice in terms of
the combinations of server configurations it offers, and does not alleviate many of the challenges above. While it
enables applications to specify their combination of server configurations, it is up to applications to choose their
specific server configuration. While tools, such as Amazon Spot Bid Advisor [2], may help users in selecting
servers based on price, they expose only coarse volatility information, e.g., low, medium, or high.

3.1 Reducing Risk through Diversification
We use two key insights for reducing server revocation risk for a distributed batch-oriented application. The first
insight is to choose servers which have mean time between revocations (MTTR) that significantly exceed the
expected job length. For example, if a batch job has an expected length of 5 hours, then it will have a higher
probability of completion if it runs on a server with MTTR of 100 hours, when compared to running it on a server
with MTTR of 10 hours. Thus, choosing server configurations where the MTTR is much greater than the job length
also increases the chances of a job completing without any revocations.

Each transient server configuration in a cloud platform represents a market with its own supply and demand
conditions. If a parallel batch-oriented job chooses homogeneous servers from a single cloud market, then any
revocation event will cause all servers to be lost simultaneously (in Amazon’s EC2 spot market, if the spot price
rises above bid price, then all the servers with that bid-price are revoked.). Our second insight for reducing the
impact of concurrent revocations is to choose a heterogeneous mix of transient servers drawn from multiple markets.

Empirical analysis indicates that price fluctuations across markets are largely uncorrelated with each other
(Figure 2). Thus, the revocation events in one market may not cause revocations in certain other markets, since
surging demand and revocations in one market will not impact available capacity in other independent markets. As
a result, use of a heterogeneous mix of transient servers drawn from independent or weakly correlated markets can
mitigate the impact of revocations—since revocations now only impact a fraction of an application’s servers. This
enables jobs to make forward, albeit degraded, progress on the remaining transient servers.

However, constructing such a heterogeneous mix of servers from multiple markets is not trivial. It involves
selecting transient servers that are “cheap” and yield high savings compared to their on-demand counterparts, yet at
the same time we must minimize the risk of simultaneous revocations—if all markets fail simultaneously, there is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 4. Publication date: June 2017.



4:6 • Prateek Sharma, David Irwin, and Prashant Shenoy

little value in diversification. Thus we must satisfy two objectives: pick markets to minimize cost and minimize
their failure correlation. The large number of possible markets (>2,500 spot markets on Amazon EC2), means
that achieving this dual objective is intractable with ad-hoc techniques [45] and heuristics [43] that past work on
multiple transient server selection has used. We describe our solution to this multiple server selection problem
using portfolio theory next.

3.2 Server Portfolios
Intelligent server selection is key to minimizing the frequency and magnitude of disruptions seen by applications
running on transient servers. To address this problem, we present server portfolios, a new model-driven framework
to create virtual clusters composed of a mix of transient server types which offer flexible costs and availability.

Portfolios enable ExoSphere to construct a mix of cloud servers tailored to application needs. Server portfolios
draw inspiration from finance [17, 37, 38]. Intuitively, a financial portfolio involves creating a suitable mix of
financial investments for an investor that are drawn from an underlying mix of assets such as stocks, bonds, etc.
The goal is to construct a mix that matches the investor’s tolerance for risk and reward. The risk tolerance dictates
whether the portfolio contains a more risky mix of high-reward assets, or a mix of lower-reward but lower-risk
assets.

Similarly, server portfolios comprise a mix of transient servers that are drawn from an underlying mix of all
transient server markets. Like financial assets, transient server markets exhibit different price and revocation
characteristics. Some markets may have low prices but higher revocation rates, while others have higher, more
stable, prices with infrequent revocations. Consequently, depending on the risk tolerance of an application, server
portfolio construction involves maximizing the risk-adjusted returns by designing an appropriate mix of server
markets.

ExoSphere instantiates the model-driven portfolio mechanism to create virtual clusters for applications. At
startup time, applications specify their aggregate resource requirements (CPU-cores and memory) in the form of a
resource vector r = [rcpu,rmem] , and their risk tolerance1. It then uses portfolio creation models and algorithms that
are rooted in Modern Portfolio Theory [37, 38] to construct a mix of servers for the application, as discussed next.

3.3 Model-driven Portfolio Construction
We now present ExoSphere’s portfolio model, which is based on Modern Portfolio Theory2from financial eco-
nomics [17, 37, 38]. The goal in ExoSphere is to maximize risk-adjusted returns for each application, where the
returns are the cost savings from using transient servers (over the on-demand prices), while risk is the application’s
tolerance to server revocation events. Formally, ExoSphere finds a suitable mix of transient servers that maximize
the risk-adjusted expected return given by:

E[Return]−α ·Risk (1)

where E[Return] is the difference between the cost of an on-demand server and the expected cost of the transient
server. To formally define E[Return], assume that the cloud platform offers servers in n distinct markets. Let Di
denote the on-demand price, and let E[Si] denote the mean of the transient server price. Then,

Returni = 1− E[Si]

Di
(2)

Let c denote the vector representing the returns for all n markets, where c = [Return1, . . . ,Returnn]. Let xi denote
the fraction of servers from market i chosen in our portfolio (0 ≤ xi ≤ 1). Then x = [x1, · · ·xn] denotes the portfolio

1If available, the estimated job length can be provided, and only markets with MTTR >> job-length are considered.
1Modern Portfolio Theory was first proposed in 1952 [37] and remains the foundational basis for much of portfolio optimization in finance even
today [38].
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allocation vector, and xT is its transpose. The effective expected return of a portfolio is then:

E[Return] = cxT (3)

The parameter α (in Equation 1) denotes the risk-averseness of the application or user. A low value of α

indicates that the application places lower emphasis on avoiding server revocation risk. Conversely, a high value of
α indicates that an application is highly risk-averse, and is willing to incur an extra cost for this. We also use the
term risk tolerance to mean the inverse of risk-averseness.

To capture risk, we draw an analogy with financial portfolio selection, where investments are chosen such that
their prices are not correlated. The rationale is that if one asset (say, a particular stock) sees a decline in price, then
the other assets (e.g., a bond) are unlikely to see a concurrent decline. This way, we avoid large declines in the
overall portfolio value.

In our case, we wish to select server markets with independent revocation events—thus if there is a revocation in
one market, others will not see a concurrent revocation. This reduces the total number of allocated servers that are
revoked. To do so, we define a covariance matrix V that captures pairwise correlations between all pairs of markets.
Vi j is the correlation between markets i, j, and captures their simultaneous revocations. Higher values indicate that
the two markets are highly correlated in their revocations, and the chances of closely spaced revocations are greater.
We use this formulation to define the revocation risk of a portfolio as:

Risk = xVxT (4)

Our portfolio construction problem can then be formulated as the following optimization problem:

Maximize: cxT −αxVxT (5)

Subject to:
n

∑
1

xi = 1

x ≥ 0

We can solve Equation 5 for a wide range of risk-aversion parameters (α) to compute the lowest-cost portfolios
for any given risk. The expected returns and revocation risks of these portfolios are shown in Figure 3, which shows
the expected cost savings for a range of revocation risks. As the revocation risk is reduced, so is the cost savings.
We also see from Figure 3 that expanding the candidate-set from r3 servers in the US-east-1 region to all the servers
in the US-east-1 region results in a 1% increase in savings, and a 20-50% reduction in revocation risk. This occurs
because a larger set of candidate markets both allows more freedom in choosing markets, and increases the number
of markets with low correlations.

The effectiveness of the risk-averseness parameter can also be seen in Figure 4, which shows the distribution
of servers in portfolios with different risk-averseness parameters. We can see that the portfolios become more
diversified as the risk-averseness increases.
Constructing the covariance matrix. The covariance matrix V captures the pairwise correlation between markets.
Our formulation allows multiple types of correlation to be used. The different correlation functions (and their
corresponding V matrices) allows ExoSphere to adjust the portfolios to the users’ perceptions of risk.

The first and most basic form of correlation is simply the correlation between the spot prices. In the case of
Amazon EC2, we can use price histories of spot servers, which are publicly available, to compute the mean returns
and the covariance matrix. That is, we compute the pairwise covariances by using spot prices to capture revocation
events and using the standard covariance formulation. Let Xt ,Yt denote the spot price of markets X ,Y respectively
at time t. Then the standard definition of covariance applies:

V price
XY =

1
T

T

∑
t=1

(X (t )−E[X ]) (Y (t )−E[Y ]) (6)
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This captures the correlation between the prices in different markets, and is useful metric for price sensitive users,
since they may not want prices of all markets to increase simultaneously.

In transient server environments, simultaneous market revocations can lead to disruption of application availability
or performance. To capture simultaneous revocation risk between two markets, we use the likelihood of simultaneous
revocation. We again use the spot price traces to find simultaneous revocations between markets—we say that
two markets have a simultaneous revocation if servers in those markets get revoked within a small time window
(5 minutes). This allows us to define the entries in the covariance matrix using the probability of simultaneous
revocations.

V revoc
XY = Probability of simultaneous revocation of X,Y (7)

Lastly, we also provide a hybrid risk formulation that captures both simultaneous revocations and changes in
prices. We first transform the spot prices to capture revocation events, and then compute the covariance of these
transformed prices. Since a spot server is revoked if its price increases above the bid price, we capture the revocation
and unavailability by setting the price to the maximum spot price. For a given market, if we are given a trace of the
spot prices S and the bid price B, we define the transformed prices as:

S′ (t ) = S(t ) if S(t ) < B

=Maximum spot price = 10∗On-demand price otherwise

This ensures that we impose a very high uniform penalty when there are revocations. Because we set the prices
to the maximum spot price during a revocation, this results in a high correlation if two markets fail at near the
same time. The final step is to compute the covariances between pairwise markets (after applying the above price
transformation) by using the standard covariance formulation : V hybrid

i j = 1
T ∑

T
t=1 (S

′
i (t )−E[S′i]) (S

′
j (t )−E[S′j]).

Our portfolio model (Equation 5) formulation closely mirrors portfolio construction found in Modern Portfolio
Theory. Infact, it is a quadratic convex optimization problem.

First, we note that the covariance matrix V is positive semidefinite. V is a matrix of covariances that are always
non-negative. To establish semidefiniteness, it is enough to show that for any vector a, aTVa ≥ 0. By using the
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definition of co-variance, we get:

aTVa = aTE[(x−µ ) (x−µ )]a

= E[(aT · (x−µ )) ((x−µ ) ·a)] = E[((x−µ )a)2]≥ 0

Since the covariance matrix is positive semidefinite, xTVx is strictly convex, and thus the problem formulation in
Equation 5 is a quadratic convex optimization problem [16, 38]. The formulation can be solved by an off-the-shelf
convex solver, such as cvxopt [9]. This allows us to exactly solve the portfolio modeling problem and get portfolios
that maximize the risk adjusted returns, without having to rely on heuristics or approximation. For Amazon EC2
spot instance portfolios, we use the publicly available time series of spot prices for each spot market. We can then
compute the average spot price for each market and can get the returns vector c, as well as the covariance matrix V.

3.4 Server Allocation using Portfolios
ExoSphere considers the risk-averseness requirements of the application along with the computing resource
requirements. Based on these requirements, ExoSphere first constructs a portfolio of resources on cloud servers,
and then allocates the resources to the applications in the form of containers on these servers.

Applications submit CPU and memory resource requests in the form a resource-vector r = (rcpu,rmem), and their
placement constraints. The placement constraints comprise primarily of the risk-averseness factor α ∈ [0, inf), and
any server preferences they might have (gpu-enabled servers only, no small servers, etc).

We then construct portfolios based on these requirements, which gives us the weights for each market in the
form of a weight-vector x. These weights represent the fraction of resources that must be allocated in a market. For
each market i, we compute the CPU and memory resources that must be allocated in that market by multiplying the
portfolio-weight of that market (xi) by the resource-vector (r). ExoSphere then determines the actual number of
servers to allocate in market ni based on the CPU and memory capacities of the servers in that market (CPUi,MEMi)
as follows:

ni =max
{xircpu

CPUi
,

xirmem

MEMi

}
(8)

We take the maximum of the servers required to satisfy both the CPU and memory requirements so that the
application’s resource allocation meets or exceeds the requirements in all resource dimensions. This approach can
be extended to other resource types (disk/network bandwidth, etc.). Upon deciding the number of servers that an
application needs in each market, ExoSphere then requests new servers (with bid price set as the on-demand price)
from the cloud operator. ExoSphere also allows applications to dynamically adjust their resource requirements,
which is useful for auto-scaling. Applications can adjust their CPU and memory requirements (r) at any time, and
ExoSphere adds or removes servers from each market.

3.5 Statistical Multiplexing of Servers
In the above described server allocation policy, it may be possible for an application’s resource requirements to be
smaller than the resources offered by the server portfolio. This can occur because of two reasons. The first reason is
that ExoSphere maximizes the (risk adjusted) cost-savings relative to the on-demand price, which may require
selection of larger servers. Such price inversions are common in EC2 spot markets, and can occur if smaller transient
servers have a larger demand compared to their larger counterparts. The second reason for surplus resources in a
portfolio is that ExoSphere’s allocation ensures that sufficient servers are available to meet the demands across all
resource types i.e., both CPU and memory. For example, an application requesting 2 CPUs and 10 GB memory
may be allocated a portfolio of 2 m3.large servers each having 2 CPUs and 7.5 GB memory, resulting in 2 free
CPUs and 5 GB of free memory across both the servers.
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ExoSphere reduces the surplus unused resources in a portfolio by relying on statistical multiplexing. The key
idea is that transient servers can be multiplexed across multiple portfolios. This allows multiple applications to
share the servers in their virtual clusters such that the free and unused resources of a server can be used by other
applications. In addition to increasing server utilization, this also reduces costs, since the cost of transient servers is
also proportionally shared between the applications sharing a server.

ExoSphere’s statistical multiplexing, also referred to as the shared-cluster policy, works as follows. We use the
portfolio modeling and creation process described earlier. This gives us the portfolio weights vector x, indicating
the weights of each market in the portfolio. The application’s actual resource requirements (r) are first met by
trying to use as many surplus resources as possible across all the servers in a given market. That is, for each market
in the application’s portfolio, we first find surplus resources on existing servers in that market, and then request the
cloud servers required to meet the unmet resource demand in that market instead of all ni servers (Equation 8).
Finding surplus resources involves finding servers such that their allocated-resource vector is less than the available
resources. ExoSphere uses the “best-fit” policy: it sorts the servers in each market in descending order of their free
resource availability, and then proceeds to allocate resources (as containers) from these servers until either all free
resources in the market are allocated or if the application’s resource requirements in that market are satisfied.

Finally, we note that this multiplexing of servers is only effective if there exist multiple applications to exploit
the free resources, and if there is a steady stream of applications leaving and entering a system. We evaluate the
cost effectiveness of this multiplexing scheme in Section 6.3. In the next section, we describe how applications can
use the API provided by ExoSphere to design and implement their own transiency-specific policies.

4 APPLICATION INTEGRATION
In addition to supporting the portfolio abstraction, ExoSphere provides a number of key mechanisms to support
the execution of batch-oriented applications on transient servers. ExoSphere’s design is based on the Exokernel
philosophy, where it provides a small set of mechanisms to make an application transiency-aware, and leaves the
design of transiency-specific policies to the application.

Unlike much of prior work on running applications on transient servers, ExoSphere gives applications the ability
to define their own policies for handling revocations. This allows applications to define policies to suit their fault
tolerance requirements, and also allows more efficient fault tolerance. For example, using application-level fault
tolerance such as application-level checkpointing [43] may significantly reduce the overhead of checkpointing
compared to application-agnostic system-level checkpointing.

ExoSphere uses a two-level architecture (Figure 5), where ExoSphere provides the portfolio abstraction and
transiency-specific “up-calls” to the applications, which may use them to implement their own policies. Associated
with each application is a job-manager, which communicates with ExoSphere to implement these policies.

Given any vanilla batch-oriented application, converting it into a transiency-aware variant of that application
involves defining three policies: a (i) portfolio policy, which specifies its resource needs and risk tolerance, (ii)
fault-tolerance policy, which specifies whether and how the application state is saved to deal with potential server
revocation, and (iii) recovery policy, which specifies the policy to replenish servers upon a revocation event and to
resume the application after recovering saved state.

The portfolio policy is implemented using ExoSphere’s portfolio abstraction described in the previous section.
To implement a broad range of fault-tolerance and recovery policies, ExoSphere supports three key mechanisms
via the up-call API described in Figure 6:
Exposing the Portfolio MTTRs: Since cloud platforms only expose transient server prices but not revocation
statistics, ExoSphere provides MTTR information immediately after portfolio creation and periodically (every 5
minutes) via the portfolioMTTR upcall. ExoSphere provides the mean MTTR of an application’s portfolio, as
well as the specific MTTRs of the individual transient servers within the portfolio. An application can use this
knowledge of how frequently a portfolio server is likely to be revoked to tune how frequently to save its state.
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Fig. 5. ExoSphere’s design architecture. The job managers
for each application implement the resource allocation re-
quests and the fault tolerance policies.

Down-Calls
portfolio	=	reqResources(cpu,	mem,	alpha,	job-
len)

Up-Calls
mttrList	=	portfolioMTTR(portfolio)

Notify(event,	serverList)
event	=	{hardRevocation,	softRevocation,
priceThreshold}

Fig. 6. ExoSphere API. Applications allocate portfolios by
using down-calls, and receive transiency-specific notifica-
tions using the up-calls provided by ExoSphere.

Hard revocation signals: ExoSphere tracks a cloud platform’s termination warning for one or more servers and
signals the application about imminent revocation of these servers via the Notify(hardRevocation) upcall.
Soft signals: Soft signals are provided to signal specific conditions to the application. ExoSphere currently supports
two types of soft-signals: (i) price threshold signals and (ii) soft revocation. Price threshold signals are used by price
sensitive applications to track when the price exceeds a specified threshold, by using the Notify(priceThreshold)
upcall, which it can use to relinquish servers and restart computation later to avoid going over budget. Soft revocation
signals are upcalls from ExoSphere when it detects early signs of revocation—they serve as an early warning (but
not a guarantee) that revocation may occur in the near future (e.g., when the signature of a price spike is detected).
The soft-revocation notification provides more time for applications to take action (e.g. checkpoint, migrate, etc).

Next, we describe how these mechanisms can be used to create transiency-aware versions of three common
batch-oriented applications with modest effort.

4.1 Data-parallel Application: Spark
The low-cost of transient servers makes them very appealing for running data-parallel data-intensive frameworks
like Hadoop, Spark, Naiad, etc. Such frameworks run two broad classes of jobs. Traditionally, they run data
intensive batch jobs that perform computation over large amounts of data in parallel. These frameworks also support
batch-interactive [43] jobs such as SQL queries, interactive machine-learning, or streaming analytics, which have
lower-latency requirements.

We use Spark [60] as a representative data-processing framework to build a transiency-aware application using
ExoSphere. Spark is a popular data-parallel framework and supports both batch and batch-interactive computation.
Spark performs data transformations on in-memory distributed datasets called Resilient Distributed Datasets
(RDDs [60]). The loss of servers leads to the loss of the in-memory RDD partitions, which can lead to recursive
recomputation. While batch workloads can tolerate the delay due to recomputation, such recomputation significantly
increases the latency for batch-interactive workloads, such as SQL queries or REPL-based environments.
Portfolio Policy. The portfolio policy for a Spark cluster depends on the Spark workload characteristics. Purely
batch workloads are more disruption tolerant and may choose to optimize for lower cloud costs. Thus, when
instantiating a Spark cluster for a batch workload, a low risk-averseness portfolio (low α) can be requested. Doing
so will skew the portfolio towards lower costs. In contrast, batch-interactive and streaming workloads are highly
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risk-averse, and thus request highly diversified portfolios with a high α to reduce the performance impact of
revocations (but at potentially higher cost).
Fault-tolerance Policy. Spark includes a built-in RDD checkpointing mechanism, which serializes RDDs to stable
storage. However, Spark leaves it to the application to decide which RDD to checkpoint. A checkpoint operation
imposes significant overhead, since it causes a substantial amount of in-memory data to be written to disk.

Designing a fault-tolerance policy for our transiency-aware version of Spark is straightforward using this
checkpoint operation—we periodically checkpoint recent RDDs. Due to the overhead imposed by checkpointing,
the checkpoint interval must be carefully chosen. Since ExoSphere exposes the MTTR of the portfolio, we can use
it to set the checkpointing interval to τ =

√
2 ·δ ·MTTR, where δ is the time it takes to write a checkpoint to disk,

and the MTTR is Mean Time To Revocation of the portfolio. This expression follows directly from a classic result
in fault-tolerance [21] and has been used in other Spark-based systems such as Flint [43]. To implement this policy,
we modify the Spark job-manager to periodically checkpoint RDDs, and use saved checkpoints when resuming
after a revocation. The pseudo-code for the Spark periodic checkpointing is below:

whi le ( t r u e ) :
m t t r = por t fo l ioMTTR ( p o r t f o l i o ) . g e t ( )
t a u = math . s q r t (2* m t t r * d e l t a )
s l e e p ( t a u )
f o r rdd in j o b . r d d s . Sor tBy ( ` ` age ' ' ) [ 0 ] :

rdd . c h e c k p o i n t ( )

Recovery Policy. The recovery policy comprises of two parts: how to recover the application upon a revocation
event, and how to resize the cluster to handle lost servers. Upon receiving a hard revocation signal from ExoSphere,
the job-manager in our transiency-aware Spark triggers recomputation from the last saved RDD checkpoint. The
decision on whether to replenish lost servers depends on the job progress and workload characteristics. Due to
Spark’s in-built fault-tolerance mechanisms, jobs are able to continue execution on remaining servers. However,
continuing in this degraded mode increases job completion times (even when resuming from a saved checkpoint),
due to the potential of spilling RDDs to disk, or reduction in the size of the RDD cache.

For pure batch jobs, we can use job progress (by comparing against estimated job-length), and intelligently
decide whether to replenish (e.g., replenish if job-progress < 70%). For batch-interactive or streaming workloads,
an immediate replenishment policy is always preferred due to the latency requirements.
Comparison with other Spark-based systems. Flint [43] and TR-Spark [57] are two recently proposed transiency-
aware versions of Spark. Both systems use an application-level fault-tolerance and require significant complex
modifications in Spark to embed new mechanisms and policies. Our version uses ExoSphere abstractions and
mechanisms to implement similar policies. We model our version on Flint’s design. However, while Flint requires
3000 lines of code changes [43] to Spark, ExoSphere requires adding only 400 lines, and benefits from separating
issues such as portfolio construction out of the application. ExoSphere also allows a richer server selection policy,
since portfolios can be tailored to the workload’s risk tolerance.

TR-Spark [57] is another attempt to make Spark transiency-friendly, and changes task-scheduling in Spark to
avoid scheduling jobs to nodes that face imminent revocation. These changes can also be supported by ExoSphere,
since TR-Spark also uses MTTR information. Mostly, ExoSphere’s Spark benefits from separation of concerns and
requires less changes to the application (Spark) in order to run on transient servers.

4.2 Parallel HPC Application: MPI
Message Passing Interface (MPI) is the predominant framework for scientific and high-performance computing.
MPI jobs tend to be parallel compute-intensive tasks and their large degree of parallelism can benefit from running
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on low-cost transient cloud servers [36]. However, unlike Spark, MPI’s message-passing model is highly intolerant
to revocations. In particular, revocation of a single server can cause the entire MPI job to fail.
Portfolio policy. Since even a single server revocation requires the entire job to be restarted (from the beginning
or from a checkpoint), a policy that attempts to limit failures to a fraction of the servers is not adequate—any
revocation, whether it is one server or all servers, has the same impact. Thus, stability is more important than server
diversity, i.e., choosing servers with MTTR >> the job length, which reduces the probability of revocation, is
more important than portfolio diversity. Thus, MPI’s job-manager requests portfolios by specifying the expected
job-length, and specifies a low risk-averseness parameter to ensure selecting high-MTTR servers.
Fault-tolerance policy. Many MPI platforms, such as OpenMPI [8], support checkpointing. In such cases, the
MPI job can periodically checkpoint its state similar to ExoSphere’s Spark. If checkpointing is not supported or is
undesirable, then no fault-tolerance policy is necessary and the job is simply restarted from the beginning.
Recovery policy. Due to the inability of MPI jobs to continue computation after partial failures, the immediate
replenishment policy must be used to restore the cluster to its original size upon a failure of one or more servers.
Once replenished, the job is restarted from the most recent checkpoint or the beginning. The pseudo-code of the
revocation-handling policy for MPI is shown below:

def N o t i f y ( h a r d R e v o c a t i o n , s e r v e r s ) :
Ki l l_MPI_Job ( )
p o r t f o l i o = r e q R e s o u r c e s ( cpu , mem, a l p h a =0)
S ta r t _MPI_Job ( p o r t f o l i o )

The ExoSphere MPI version required a modest effort of 50 lines of code for the portfolio and recovery policy.

4.3 Delay Tolerant Application: BOINC
Volunteer computing frameworks such as BOINC [12] are an example of “embarrassingly parallel” workloads that
are delay-tolerant and do not have strict deadlines.
Portfolio policy. Since reducing cost is more important than mitigating failures, a low-to-moderate risk-averseness
parameter (α) can be specified when constructing a portfolio for BOINC. For highly price-sensitive workloads, a
low value may be used, but it risks losing a large fraction (or all) servers. Use of a moderate value provides some
diversification, which allows progress to be made when part of the portfolio is revoked.
Fault-tolerance policy. Typically no fault-tolerance mechanisms are needed, since if a server is lost in a volunteer-
computing scenario, the task is restarted. In some cases with long-running tasks, a lazy-checkpointing policy can
be used, which checkpoints the task after receiving a soft or hard revocation warning. Soft warnings increase the
chances of completing the checkpoint, since a lazy-checkpoint may not complete within the hard-warning duration
(2 minutes on EC2, 30 seconds on GCP).

Due to its price sensitive nature, BOINC can use soft signals to set a price threshold and upon receiving a
notification of rising prices, can voluntarily relinquish servers and wait for the price to reduce to maintain a budget.
Recovery policy. The price sensitive nature implies that immediate replenishment of lost servers is not strictly
necessary. The BOINC job-manager can monitor the price of portfolios offered by ExoSphere to wait until prices
drop. Tasks that were affected due to server revocations are simply queued on other remaining nodes and are
restarted (from the beginning or from the last checkpoint).

The transiency-aware BOINC required about 200 lines of additional code—most of which pertain to the
implementation of lazy checkpointing and recovery.
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Fig. 7. Portfolios for various market scenarios

5 EXOSPHERE IMPLEMENTATION
While ExoSphere’s design and its portfolio mechanism are general, we implement ExoSphere using Mesos [32].
The choice of an existing cluster manager for implementing ExoSphere is motivated by two factors. First, Mesos
employs an Exokernel [27] like philosophy of letting higher-level applications implement their own specific
resource allocation policies. Thus, ExoSphere’s abstraction and interfaces are a natural fit into the architecture of
such cluster managers. Second, enhancing a popular cluster manager such as Mesos to support transient cloud
servers yields a transiency-aware cluster-manager that can find broad use and adoption in today’s cloud platforms.

ExoSphere is built using Mesos v0.27 and cloud native APIs. Our prototype has two key components, the
ExoSphere master and the application job-managers. The ExoSphere master is implemented in 5000 lines of
C++ code by extending the Mesos master. The master implements two key components: portfolio-based resource
allocation and the application-facing API shown in Figure 6. Our prototype currently supports EC2 spot instances,
which offer a rich collection of servers and publicly available price history. We also have proof-of-concept support
for Google’s preemptible instances (where inferring availability information is more challenging).

ExoSphere requires applications to implement a job-manager using ExoSphere’s API to design their own portfolio-
creation, fault-tolerance, and recovery policies. Requiring applications to implement their own job-manager is
increasingly common in modern cluster managers—our job-manager is equivalent to Application-Schedulers in
Mesos and Application-Masters in Yarn. The master communicates with the job-managers using the existing Mesos
RPC and HTTP APIs. This allows existing application-schedulers (written for Mesos) to be used and augmented
with the transiency-specific functions provided by ExoSphere. The only requirement for running existing Mesos
applications on ExoSphere is that they handle the revocation hard-warning notification, which can be implemented
in either C++, Java, or Python.

Applications (via their job-managers) make requests for resources and their portfolio requirements via the existing
Mesos requestResources RPC, which the ExoSphere master intercepts and handles. The resource allocation
involves portfolio construction, server-packing, and creating and keeping track of the cloud servers.
Portfolio-based allocation. In order to construct portfolios, we use historical price traces. Amazon publishes
the past three months of spot price traces (available using the EC2 describe-spot-price-history API). We
periodically collect the price history for all markets, and compute the mean spot price, as well as the covariance
matrices for various risk functions. Once these have been computed, ExoSphere solves the quadratic convex
optimization problem using the Python cvxopt solver, which takes under 1 second for the 250 us-east-1 markets
and under 25 seconds for the 2500 global markets. The portfolios for various risk-averseness factors are precomputed
and cached, and this reduces the computational overhead of portfolio construction even further. In the absence of
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any server-type or job-length constraints, portfolio construction usually only involves a simple look-up/search in
the portfolio cache.

ExoSphere does explicit, fixed resource allocation, and does not use Mesos’s Dominant Resource Fairness
allocator. Once the application terminates or voluntarily relinquishes its resources, its servers are placed on a
free-list of servers for a short duration (2× allocation latency), instead of immediately terminating them. Similar
to anticipatory scheduling, holding on to recently relinquished servers in the free-list speeds up the allocation of
servers for future applications, since launching transient servers takes a few (~5) minutes.

New cloud servers are requested using the standard EC2 APIs, and are started with either the application provided
disk-image (containing the required application dependencies), or a default image (AMI) which has a few common
applications installed. We assume that most applications will use S3 or EBS for storing data, since the content of
local disks is lost upon server revocation. The resources on cloud servers are offered to the applications using the
Mesos abstraction of resource offers.

ExoSphere’s portfolio-based policy may over-allocate resources, which can lead to idle resources on some
servers. For example, an application requesting 2 CPUs is allocated a cloud server with 4 CPUs results in 2 surplus
CPUs. To increase cluster utilization and reduce costs, ExoSphere also implements a server packing policy as an
optimization, which first tries to meet resource demands of the application (in each market) from the idle resources
on the servers in that market. For this, we use a simple first-fit approach to allocate resources. Note that applications
run inside containers (e.g., Mesos executors), which provide security and performance isolation. Nevertheless,
applications which do not wish to face the potential interference because of other co-resident applications can still
request private cloud servers not shared with other applications.
ExoSphere Upcalls. The ExoSphere master also interacts with the servers and the cloud provider in order to issue
transiency-specific notifications. Revocation hard-warnings are first detected by the servers, which then inform
the master, which relays them to the applications via the Mesos inverseOffers API, which includes a list of
affected servers/containers and the remaining time until termination. Soft revocation warnings are provided by
monitoring the state of each server, and notifying the application if it reaches the marked-for-termination state.
Additionally, the master can also bid much higher than the on-demand price and monitor for price increases to
increase the soft-warning duration. Price notifications are used by applications to know if the price of their portfolio
has increased above a threshold. The ExoSphere master uses the describe-spot-price-history EC2 API to
continuously monitor prices of all the active markets and delivers the notification if the price crosses the threshold.

6 EXPERIMENTAL EVALUATION
Our experimental evaluation focuses on answering two key questions: i) What is the effectiveness of the portfolio
abstraction in reducing cost and revocation risk? and ii) What is the impact of different policies for handling
revocations and with different risk tolerances? We evaluate ExoSphere on EC2, and also show results for Google
Cloud Platform (GCP). We use spot price traces over a six month period (Apr-Sept 2015) for evaluating portfolios,
and restrict ourselves to a single region (us-east-1), since many applications have geographic locality constraints
that prevent using servers from multiple regions. We evaluate the performance of transiency-aware variants of
Spark, MPI, and BOINC on ExoSphere.
Spark. We use the Spark version modified to work with ExoSphere, and use Amazon S3 for storing input/output
data and RDD checkpoints. We use a combination of batch and low-latency workloads for Spark. We use KMeans,
an iterative machine-learning algorithm with ∼16GB of input data as a batch workload. For the low-latency,
interactive scenario, we use TPC-H database queries served by a Spark application. Spark supports SQL queries by
translating them into equivalent RDD operations, with each query akin to a short running job.
MPI. We use MPICH [7] v2.7, which supports Mesos. We use MPI as an example of a “rigid”, transiency-agnostic
application, which responds to revocations by requesting new servers and restarting its job. We use the NAS parallel
benchmark [13] as an MPI workload.
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Checkpointing Restart
Eager-Replenish +7% +32%
No Replenishment +11% +54%

Table 1. Increase in running time of Spark (KMeans
workload) due to a revocation event.

BOINC. We use BOINC as a delay-tolerant bag-of-tasks distributed application. We configure BOINC to run
fixed-length CPU-intensive embarrassingly parallel tasks.

6.1 Portfolio Construction
We first examine the risk-return tradeoff in portfolio construction, and compare it to other server selection
approaches. A baseline approach to server selection in multiple markets is the greedy strategy which picks server-
types offering the lowest average spot price. To select multiple (k) markets, the greedy approach picks the top-k
cheapest server-types for use by the application.

Figure 7a shows the expected cost savings (compared to using on-demand servers) and the expected revocation
risk for both the greedy approach and our portfolio abstraction. Since there is no explicit way to specify risk-
averseness in the greedy approach, we use a cruder “number of markets” as the diversification criterion, and divide
servers among all markets equally. Each point in Figure 7a for the greedy scenario refers to a different number of
markets picked. The best greedy portfolio approaches the cost-savings offered by the portfolio approach, but yields
a much greater revocation risk (by 50×). Compared to portfolios, other greedily constructed selections offer upto
40% less saving at 100× more revocation risk.

We also compare against Amazon Spot Fleet [3], which provides a risk-agnostic mix of servers. Given a set
of spot server types, Spot Fleets are constructed by either of two policies: the lowest-cost policy picks the server
with the lowest spot price; and the diversified policy equally distributes servers among all chosen markets. The
diversified policy is thus equivalent to our greedy policy when all servers in a region are considered. The result for
the lowest-cost Spot Fleets is also shown in Figure 7a. The Spot Fleet has similar cost to our portfolio approach,
but has almost 100× higher revocation risk for the single-market lowest-cost policy.

In practice, a system involving greedy server selection would have to iterate over all market sizes and pick
the best performing greedy selection [43], and would have no explicit way to control the revocation risk of the
selection.

So far we have seen the expected behavior of portfolios in EC2’s spot market. We now explore their behavior
in other scenarios. Figure 8 shows the CDF of the covariances of the EC2 spot markets, which shows that there
is a large number of extremely low-correlation markets with a few highly-correlated markets. If usage of spot
instances and the portfolio-approach were to increase, it is possible that the increased demand for the servers in the
“uncorrelated” markets would increase prices and revocations. To evaluate this scenario, we construct a synthetic
highly correlated covariance matrix which has no uncorrelated markets (shown in Figure 8). For our experiment,
we use these synthetic covariances and EC2 prices. Figure 7b shows that in highly correlated markets, the portfolio
approach outperforms the greedy approach by 10% in both savings and risks, and is comparable to Spot Fleets.
This is because the correlated markets reduce the possibility of exploiting market independence for portfolio
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diversification. We emphasize that this is a worst-case scenario. Today’s markets provide ample opportunity to
diversify across independent markets.
Google preemptible instances. Unlike spot instances, Google’s preemptible instances have fixed discounts. The
lack of variable pricing means that we cannot use it to estimate the correlations between different server types.
Given the lack of any availability data, we assume that ExoSphere would require active probing [39] to infer
availability. For our experiments, we use the covariance matrix from the EC2 markets. The resulting cost savings
and revocation risks are shown in Figure 7c. Because the preemptible instances have discounts in a very narrow
range (80-80.2%), the portfolios also have nearly constant cost savings. Importantly, increasing diversification
reduces the revocation risks by 75%.
Result: Portfolio construction outperforms greedy selection in uncorrelated markets, and its diversified portfolios
reduce revocation risk even when markets are correlated.

6.2 Application Performance
We now examine application performance when running on portfolios with different risks and transiency-specific
policies. For ease of exposition, we group portfolio risk-averseness into three types: low, medium, and high. Low
risk-averseness typically corresponds to single-market mode of operation, while high risk-averseness corresponds
to using as many markets as possible. Note that in practice, the portfolio weights for many markets are quite small
(< 0.001), thus these markets will not be used for applications requesting < 1000 servers. As a result, the high
risk-averseness scenario corresponds to about 10-15 server-types for most applications.
Spark. To see the impact of using application-specific policies, we run the Spark KMeans workload with the
“medium” risk-averseness portfolio. We vary the fault-tolerance and replenishment policy, and show the increase in
running time compared to on-demand servers when there is a market failure (corresponding to about 1/5th of the
servers lost) in Table 1. The periodic checkpointing with eager replenishment increases job length by 7% compared
to on-demand servers, while the no-checkpointing, no-replenishment policy increases job length by 54%. Overall,
these policies yield 60-80% cost savings compared to on-demand servers, while increasing completion times by
1.07-1.5×.

Next, we observe Spark performance as a function of portfolio diversity and fault-tolerance policy, and use eager
replenishment. Figure 9 shows the impact of a single revocation event on the running time (compared to on-demand
servers). Since checkpointing reduces RDD recomputation in Spark, the increase in job completion times is only
5% in highly diversified portfolios and 16% in the low risk averseness portfolio. Even without checkpointing, using
portfolios yields 62%, 38%, and 18% increases in running time with low, medium, and high diversification, while
still yielding 86% cost savings.
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As the portfolio diversity increases, the impact of revocation of servers in one market decreases, because a
smaller fraction of the state is lost. The recovery of the lost state is the primary contributor to the increase in running
time. Thus, Spark workloads benefit from portfolio diversification, and can reduce the increase in running times to
5% using checkpointing, and 86% cost savings compared to on-demand servers.
MPI. For MPI, we examine the expected running time of jobs compared to on-demand servers in Figure 10. We
consider two cases. In the first case, we assume that the job-lengths are known in advance, and only request markets
with MTTRs greater than two times the job-length. When only a single-market portfolio is chosen (“MPI-MTTR”
in the figure), the running time increases by only 3% compared to on-demand servers. In the second case, we use
the Spot Fleet strategy of picking the cheapest single market. In this case (“MPI-Cost” in the figure), the running
time increases by 10%. Thus, picking stable markets with MTTR >> job-length significantly reduces the running
time for MPI, when compared to the lowest-cost strategy. The cost-savings are ~80% in all cases.

Note that since a single server revocation stops the entire MPI job, MPI only cares about minimizing server
revocations, and not simultaneous revocations. Portfolio diversification reduces the number of simultaneous
revocations and not the total number of revocations. The effect of increasing portfolio diversity can also be seen
with the “MPI-MTTR” strategy in Figure 10, and we see that for highly diversified portfolios, the increase in
running-time is close to 10%. Thus, MPI does not benefit from portfolio-diversification, and stable, single-portfolios
represent the best portfolio.
BOINC. Unlike MPI, revocation in BOINC only affect the tasks that are running on the servers. We show BOINC
performance compared to on-demand servers with the lazy-checkpointing and the restart fault-tolerance policies in
Figure 10. With the highly diversified portfolio, the increase in running time compared to on-demand servers is less
than 1% with the lazy-checkpointing and about 2% without checkpointing. Thus, ExoSphere can run embarrassingly
parallel tasks at 1.01-1.05× overhead, but at more than 80% cost savings.
Result: The impact of portfolio diversification is highly application dependent. Application performance is governed
by the combination of portfolio composition, application characteristics, fault-tolerance policy, and recovery policy.
Cost depends on application performance and a combination of portfolio composition and application policies.
Portfolios with low risk averseness (i.e. high risk portfolios) yield lower costs, albeit at higher revocation risk.

6.3 Multiple Applications
ExoSphere is designed to run multiple applications simultaneously, and we now evaluate its multiplexing capabilities.
We use the Eucalyptus cloud traces [4] for realistic application arrivals and resource requests. We evaluate the costs
of running such a trace by using a simulator which replays the spot price traces. The purpose of our simulator is to
observe cluster utilization and costs for different application usage scenarios and cloud prices.

Sharing of servers among multiple applications can reduce total costs. We evaluate the extent of these savings
compared to not sharing servers (e.g., a private mode). We assign the risk-averseness to the jobs in the Eucalyptus
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trace using four different distributions: all jobs requiring low risk-averseness portfolios; all high risk-averseness
portfolios; equally distributed among low-medium-high; and distributed in a 1:2:1 ratio. Figure 11 shows the total
cost incurred with the private and the cluster sharing policy, which uses first-fit bin-packing to find idle resources
in servers in each market to satisfy portfolio requirements. By sharing servers among multiple applications, this
packing policy lowers costs by 50%.

6.4 Black Swans: Multiple market failures
Finally, it is important to note that while the portfolio construction technique gives the best expected portfolios, it
assumes that the historical price trends will continue to hold. In extreme situations, it is possible that even when
selecting servers with low risk of concurrent revocations, all (or a large majority) of markets might be revoked.
These events are akin to stock market crashes and are the black-swan events that have a high impact and are
hard to predict. We show the performance implications of such extreme events in Figure 12, which shows the
relative performance of applications running on their ideal portfolios and using the “best” fault-tolerance policy.
We compare the application performance in the expected case of a single-market failure versus the worst case when
all markets fail. We see that the impact on different applications is varied. BOINC and MPI see no difference in
their expected and worst-case, since their preferred portfolios have only a single market. For a batch workload in
Spark, the increase is significant (50%), and for the interactive Spark workload, the increase is more then 4x. We
note that these black-swan events only cause a one-time performance-hit, and don’t affect expected cost savings.
Discussion: The real-world success of any portfolio-based technique relies on the ability to model the returns and
risks of the underlying markets. However, there are many events that cannot be modeled using historical price
traces alone. Black-swan and other rare events are hard to model, since they may have never occurred in the past.
We also note that transient instances can be unilaterally revoked by the cloud provider, and cannot be modeled by
price-traces alone. While price-based modeling has led to great gains in financial markets, spot markets are different
from classic financial markets in a number of ways. Spot prices show higher volatility—prices can increase 10X
in a single jump. The high volatility makes spot markets harder to model and also means that existing financial
models that assume low volatility cannot be applied directly.

7 RELATED WORK
Our work leverages prior work on transient servers, cluster management, and portfolio theory.
Systems for Transient Servers. Recent work has looked at developing systems and middleware for transient
servers like EC2 spot instances. SpotCheck [45] introduced the notion of a derivative cloud which combines spot
and on-demand instances to run arbitrary applications on top of spot instances with high availability. SpotCheck
relies on nested virtualization and continuous memory checkpointing to live-migrate to on-demand instances
upon revocation. For batch jobs, SpotOn [49] performs spot market selection by considering the market cost and
availability, and showed that the fault tolerance mechanism has an important influence on the server selection.
OptiSpot [25] uses a combination of queueing-based application performance models and a markov chain based
spot price models to select the right server type and bid price for a given application.
Transient server selection. ExoSphere’s portfolio based server selection differs from prior work in regards to its
flexibility and generality. The risk tolerance knob introduced in ExoSphere allows easy and explicit characterization
of portfolio risk. Transient server selection policies in earlier systems [20, 36, 43, 45, 49, 57] do not have explicit
support for managing revocation risk. This is because these systems have mostly targeted a single class of
applications, and have server selection policies suited to that. For example, Flint [43] runs Spark [61] applications
on transient cloud servers, and selects markets with the lowest effective cost for batch Spark jobs, and uses a greedy
multi-market strategy for batch-interactive jobs.
Transiency-aware Applications. Prior work on making applications transiency-aware has involved application-
level application-specific approaches. For example, Flint [43] and TR-Spark [57] modify Spark to better support

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 4. Publication date: June 2017.



4:20 • Prateek Sharma, David Irwin, and Prashant Shenoy

transiency, e.g., via checkpointing, while related work focuses on optimizing MPI jobs for spot servers [36]. Similar
work has modified Hadoop and other batch applications for transient servers as well [56, 59]. Checkpointing and
scheduling policies for data processing and machine learning workloads on transient resources have been developed
more recently in [31, 58].
Portfolios. In contrast to prior work which focused on supporting narrow classes of applications on transient servers,
ExoSphere’s goal is to provide a common platform for a wide range of applications. ExoSphere distills common
abstractions based on the experience of past work to enable easy modification of current and future applications to
support transiency. Our portfolio abstraction is inspired from financial economics, where investment portfolios are
created for diversification and to reduce risk [26, 28, 37, 38] . In transient server markets, diversification reduces the
probability of simultaneous revocations, and thus plays a crucial role in server selection. The idea of risk-reduction
using diversification formalized in Modern Portfolio Theory in the 1950’s remain the basis for other popular
portfolio creation techniques such as Black-Litterman [40]. Exploring other portfolio construction techniques for
server selection remains part of our future work.

A significant amount of prior work has gone into optimizing multiple objectives in the context of server selection.
Server selection to optimize for performance and cost of on-demand servers (but without transiency considerations)
is discussed in [29, 55], and in [53] which uses genetic algorithms to find spot/on-demand pareto-efficient frontier.
CherryPick [11] uses bayesian optimization to select cost-optimal on-demand servers. Utility-based selection of
servers is shown in [19], which selects homogeneous cloud servers for different applications. In contrast, ExoSphere
selects a heterogeneous mix. Our use of portfolios is not to be confused with portfolios of policies/algorithms—
wherein a portfolio of multiple policies and algorithms are run to find the most efficient algorithm. This approach is
commonly used in SAT solvers [33], and has also been applied to cloud scheduling [48].
Cluster Management. There has been a significant amount of work on designing cluster resource managers [15,
32, 41, 51, 52] and resource management policies for running multiple applications in data center [22, 30, 34, 35]
and cloud environments [23, 24]. In particular, ExoSphere builds on Mesos [32] and can be viewed as a transiency-
aware cluster manager. To our knowledge, current cluster managers do not support transiency and variable pricing
as first-class primitives.
Resource Allocation in Data Centers. There has also been a significant amount of work in allocation of surplus
resources and risk-driven resource allocation in data centers. [18] allows idle resources to be reclaimed and uses
resource usage traces to predict resource availability for long running services. Services can run uninterrupted with
a high probability by maintaining slack between the resource allocation and usage. Risk-aware overbooking of
resources by using admission-control policies is discussed in [50]. [42] considers job task placement to mitigate
correlated failures in the data center, where a failure in a power component can affect multiple machines and hence
multiple tasks. Using surplus resources in computational clusters has a long history—Spawn [54] introduced a
market based system for selling idle resources to applications, similar to what public cloud operators are doing now.
ExoSphere’s portfolio-driven allocation policies can work in data center environments where the resource allocation
involves optimizing two different and possibly competing objectives. For example, ExoSphere can be used to
minimize performance interference adjusted costs, where instead of revocation risk, there is risk of performance
interference due to co-located applications. We note that the transiency specific API that we have developed for
applications can be used “as-is” in data center environments, where the resources of low priority jobs are revoked
in favour of higher priority applications.

8 CONCLUSION
The effective use of transient servers is predicated on their careful selection. In this paper, we introduced portfolio
modeling for transient server resource management. Unlike prior resource management schemes, portfolios
allow the easy creation of virtual clusters with different revocation risk tolerances. Existing convex optimization
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techniques can compute portfolios efficiently—computing portfolios for 2,500 spot markets takes well under one
minute.

We have prototyped and implemented a portfolio-driven cluster manager, ExoSphere, that exposes a narrow,
uniform interface and allows multiple applications to develop and use their own transiency-aware policies for
handling revocations. We have shown that existing applications such as MPI, Spark, etc., can use this interface to
design their own policies and significantly increase their performance and cost saving on transient servers. Our
experience with portfolios has shown that they are a powerful and promising resource management primitive, and
can be especially useful in situations where multiple resource management objectives (such as cost and revocation
risk) have to be minimized.
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